Cyanin-5-azid

Artikel-Nr. Packungseinheit Preis Vorlaufzeit
13030 100 uL, 10 mM/DMSO $110.00 Auf Lager
33030 500 uL, 10 mM/DMSO $210.00 Auf Lager
43030 1 mL, 10 mM/DMSO $410.00 Auf Lager
A3030 1 mg $110.00 Auf Lager
B3030 5 mg $210.00 Auf Lager
C3030 10 mg $310.00 Auf Lager
D3030 25 mg $410.00 Auf Lager
E3030 50 mg $695.00 Auf Lager
F3030 100 mg $1190.00 Auf Lager

Cyanin-5-azid (ein Analogon zu Cy5®-azid) ist ein Markierungsreagenz für die Click-Chemie, erhältlich als 10-mM-Lösung in DMSO und als Feststoff. Dieses Azid ist in organischen Lösungsmitteln (z. B. DMSO, DMF) löslich, das heißt die Markierungsreaktion ist in Gegenwart eines kleinen Anteils des organischen Lösungsmittels durchzuführen. Dieses Azid kann für die Markierung von Alkin-modifizierten Biomolekülen in Gemischen aus Wasser und organischen Lösungsmitteln verwendet werden. Die Lösung in DMSO ist gebrauchsfertig für die Anwendung in der Biokonjugation. Eine wasserlösliche Variante dieses Reagenzes ist ebenfalls erhältlich.

Cyanin 5 ist einer der am häufigsten verwendeten Fluorophore und ist mit vielen Detektionsgeräten kompatibel. Cyanin 5 ist eine Alternative zu Cy5®, Alexa Fluor® 647 und DyLight 649.

Absorptions- und Emissionsspektren von Cyanin 5

Absorptions- und Emissionsspektren von Cyanin 5

Kunden kauften zusammen mit diesem Produkt

Cyanin-3-azid

Azidderivat des Fluoreszenzfarbstoffes Cyanin 3 für die Click-Chemie

Cumarin-343-X-NHS-Ester

Cumarin 343 ist ein blau emittierender Fluorophor, der als FRET-Donor für Fluorescein (FAM) dienen kann. Dieses Derivat weist einen Linker zwischen dem Fluorophor und der funktionellen Gruppe auf, der die Löslichkeit verbessert und den räumlichen Abstand des Markers zum Zielmolekül vergrößert.

BDP-630/650-carbonsäure

BDP 630/650 ist ein heller Fluorophor im fernroten Bereich des Spektrums. Er eignet sich gut für die Mikroskopie und für Fluoreszenzpolarisationsmessungen. Dieses Carbonsäurederivat kann als Kontrolle eigesetzt oder zur Markierung aktiviert werden.
Fügen Sie dieses Produkt Ihrem Einkaufswagen hinzu, um Ihre Ware per kostenfreier Expresslieferung zu erhalten.

Allgemeine Eigenschaften

Erscheinungsform: dunkelblaues Pulver bzw. Lösung
Molekülmasse: 601.22
Molekülformel: C35H45ClN6O
Löslichkeit: löslich in organischen Lösungsmitteln (DMSO, DMF, Dichlormethan), geringe Löslichkeit in Wasser
Qualitätskontrolle: NMR 1H, HPLC-MS (95 %)
Lagerungsbedingungen: Lagerbeständigkeit: 24 Monate ab dem Wareneingang bei −20 °C an einem lichtgeschützten Ort. Transport: bei Raumtemperatur bis zu drei Wochen. Längere Lichteinwirkung vermeiden. Trocken lagern.
Sicherheitsdatenblatt:: herunterladen

Spektrale Eigenschaften

Anregungsmaximum / nm: 646
ε / L⋅mol−1⋅cm−1: 250000
Emissionsmaximum / nm: 662
Fluoreszenz-Quantenausbeute: 0.2
CF260: 0.03
CF280: 0.04

Zitierungen

  1. Barsh, G.R.; Isabella, A.J.; Moens, C.B. Vagus Motor Neuron Topographic Map Determined by Parallel Mechanisms of hox5 Expression and Time of Axon Initiation. Current Biology, in press. doi: 10.1016/j.cub.2017.11.022
  2. Maudens, P.; Meyer, S.; Seemayer, C.A.; Jordan, O.; Allémann, E. Self-assembled thermoresponsive nanostructures of hyaluronic acid conjugates for osteoarthritis therapy. Nanoscale, in press. doi: 10.1039/C7NR07614B
  3. Wei, S.; Perera, M.L.W.; Sakhtemani, R.; Bhagwat, A.S. A novel class of chemicals that react with abasic sites in DNA and specifically kill B cell cancers. PLoS One, 2017, 12, e0185010. doi: 10.1371/journal.pone.0185010
  4. Shabanpoor, F.; Hammond, S.M.; Abendroth, F.; Hazell, G.; Wood, M.J.A.; Gait, M.J. Identification of a Peptide for Systemic Brain Delivery of a Morpholino Oligonucleotide in Mouse Models of Spinal Muscular Atrophy. Nucleic Acid Therapeutics, 2017, 27(3), 130–143. doi: 10.1089/nat.2016.0652
  5. Long, M.J.C.; Parvez, S.; Zhao, Y.; Surya, S.L.; Wang, Y.; Zhang, S.; Aye, Y. Akt3 is a privileged first responder in isozyme-specific electrophile response. Nature Chemical Biology, 2017, 13(3), 333–338. doi: 10.1038/nchembio.2284
  6. Cho, W.; Koo, J.Y.; Park, Y.; Oh, K.; Lee, S.; Song, J.-S.; Bae, M.A.; Lim, D.; Lee, D.-S.; Park, S.B:. Treatment of Sepsis Pathogenesis with High Mobility Group Box Protein 1-Regulating Anti-inflammatory Agents. Journal of Medicinal Chemistry, 2017, 60(1), 170–179. doi: 10.1021/acs.jmedchem.6b00954
  7. Westergaard Mulberg, M.; Taskova, M.; Thomsen, R.P.; Okholm, A.H.; Kjems, J.; Astakhova, K. New Fluorescent Nanoparticles for Ultrasensitive Detection of Nucleic Acids by Optical Methods. Chembiochem, 2017, 18(16), 1599–1603. doi: 10.1002/cbic.201700125
  8. Louage, B.; Tack, L.; Wang, Y.; De Geest, B.G. Poly(glycerol sebacate) nanoparticles for encapsulation of hydrophobic anti-cancer drugs. Polymer Chemistry, 2017, 8(34), 5033–5038. doi: 10.1039/c6py02192a
  9. Fiacco, S.V.; Kelderhouse, L.E.; Hardy, A.; Peleg, Y.; Hu, B.; Ornelas, A.; Yang, P.; Gammon, S.T.; Howell, S.M.; Wang, P.; Takahashi, T.T.; Millward, S.W.; Roberts, R.W. Directed Evolution of Scanning Unnatural-Protease-Resistant (SUPR) Peptides for in Vivo Applications. Chembiochem, 2016, 17(17), 1643–1651. doi: 10.1002/cbic.201600253
  10. Farzan, V.M.; Aparin, I.O.; Veselova, O.A.; Podkolzin, A.T.; Shipulin, G.A.; Korshun, V.A.; Zatsepin, T.S. Cy5/BHQ dye-quencher pairs in fluorogenic qPCR probes: effects of charge and hydrophobicity. Analytical Methods, 2016, 8(29), 5826–5831. doi: 10.1039/c6ay01304j
  11. Braner, M.; Kollmannsperger, A.; Wieneke, R.; Tampé, R. ’Traceless’ Tracing of Proteins – High-Affinity Trans-Splicing Directed by a Minimal Interaction Pair. Chemical Science, 2016, 7(4), 2646–2652. doi: 10.1039/C5SC02936H
  12. Li, L.; Grausam, K.B.; Wang, J.; Lun, M.P.; Ohli, J.; Lidov, H.G.W.; Calicchio, M.L.; Zeng, E.; Salisbury, J.L.; Wechsler-Reya, R.J.; Lehtinen, M.K.; Schüller, U.; Zhao, H. Sonic Hedgehog promotes proliferation of Notch-dependent monociliated choroid plexus tumour cells. Nature Cell Biology, 2016, 18(4), 418–430. doi: 10.1038/ncb3327
  13. Yoshimatsu, T.; D'Orazi, F.D.; Gamlin, C.R.; Suzuki, S.C.; Suli, A.; Kimelman, D.; Raible, D.W.; Wong, R.O. Presynaptic partner selection during retinal circuit reassembly varies with timing of neuronal regeneration in vivo. Nature Communications, 2016, 7, 10590. doi: 10.1038/ncomms10590
  14. van der Velde, J.H.M.; Oelerich, J.; Huang, J.; Smit, J.H.; Aminian Jazi, A.; Galiani, S.; Kolmakov, K.; Guoridis, G.; Eggeling, C.; Herrmann, A.; Roelfes, G.; Cordes, T. A simple and versatile design concept for fluorophore derivatives with intramolecular photostabilization. Nature Communications, 2016, 7, 10144. doi: 10.1038/ncomms10144
  15. Park, H.; Koo, J.Y.; Srikanth, Y.V.V.; Oh, S.; Lee, J.; Park, J.; Park, S.B. Nonspecific protein labeling of photoaffinity linkers correlates with their molecular shapes in living cells. Chemical Communications, 2016, 52(34), 5828–5831. doi: 10.1039/c6cc01426g
  16. Wei, S.; Shalhout, S.; Ahn, Y.-H.; Bhagwat, A.S. A Versatile New Tool to Quantify Abasic Sites in DNA and Inhibit Base Excision Repair. DNA Repair, 2015, 27, 9–18. doi: doi:10.1016/j.dnarep.2014.12.006
  17. Hong, T.N.; van der Hoorn, R.A.L. DIGE-ABPP by Click Chemistry: Pairwise Comparison of Serine Hydrolase Activities from the Apoplast of Infected Plants. Plant-Pathogen Interactions (Methods in Molecular Biology), 2014, 1127, 183-194. doi: 10.1007/978-1-62703-986-4_15
  18. Nobori, T.; Shiosaki, S.; Mori, T.; Toita, R.; Kim, C.W.; Nakamura, Y.; Kishimura, A.; Niidome, T.; Katayama, Y. Fluorescent Polyion Complex Nanoparticle That Incorporates an Internal Standard for Quantitative Analysis of Protein Kinase Activity. Bioconjugate Chemistry, 2014, 25(5), 869-872. doi: 10.1021/bc500142j
  19. Palsuledesai, C.C.; Ochocki, J.D.; Markowski, T.W.; Distefano, M.D. A combination of metabolic labeling and 2D-DIGE analysis in response to a farnesyltransferase inhibitor facilitates the discovery of new prenylated proteins. Molecular BioSystems, 2014, 10(5), 1094-1103. doi: 10.1039/c3mb70593e
  20. Shabanpoor, F.; Gait, M.J. Development of a general methodology for labelling peptide–morpholino oligonucleotide conjugates using alkyne–azide click chemistry. Chemical Communications, 2013, 49, 10260–10262. doi: 10.1039/c3cc46067c
  21. Astakhova, I.K.; Wengel, J. Interfacing Click Chemistry with Automated Oligonucleotide Synthesis for the Preparation of Fluorescent DNA Probes Containing Internal Xanthene and Cyanine Dyes. Chemistry - a European Journal, 2013, 19(3), 1112-1122. doi: 10.1002/chem.201202621
  22. Kim, J.; Seo, M.-H.; Lee, S.; Cho, K.; Yang, A.; Woo, K.; Kim, H.-S.; Park, H.-S. Simple and Efficient Strategy for Site-Specific Dual Labeling of Proteins for Single-Molecule Fluorescence Resonance Energy Transfer Analysis. Analytical Chemistry, 2013, 85(3), 1468-1474. doi: 10.1021/ac303089v
  23. McGouran, J.F.; Kramer, H.B.; Mackeen, M.M.; di Gleria, K.; Altun, M.; Kessler, B.M. Fluorescence-based active site probes for profiling deubiquitinating enzymes. Organic & Biomolecular Chemistry, 2012, 10(17), 3379-3379. doi: 10.1039/c2ob25258a
  24. Paredes, E.; Das, S.R. Click Chemistry for Rapid Labeling and Ligation of RNA. ChemBioChem, 2010, 12(1), 125-131. doi: 10.1002/cbic.201000466
  25. Ranall, M.; Gabrielli, B.; Gonda, T. Adaptation and validation of DNA synthesis detection by fluorescent dye derivatization for high-throughput screening. BioTechniques, 2010, 48(5), 379-386. doi: 10.2144/000113410
weitere ... (21)
Sie haben den Artikel in den Warenkorb gelegt.. Warenkorb ansehen oder zur Kasse gehen
Die eingegebene Zahl ist falsch..
translate