Biotin-PEG3-Azid
Artikel-Nr. | Packungseinheit | Preis | Vorlaufzeit | Jetzt kaufen |
---|---|---|---|---|
C3730 | 10 mg | $125 | Auf Lager | |
D3730 | 25 mg | $220 | Auf Lager | |
E3730 | 50 mg | $325 | Auf Lager | |
F3730 | 100 mg |
$450
|
Auf Lager | |
K3730 | 1 g |
$1420
|
Auf Lager |
Biotin-PEG3-Azid ist ein Klick-Chemie-Biotinylierungstool. Dieses Reagenz ermöglicht die Markierung von alkinylierten Molekülen (wie DNA, Oligonukleotide und Proteine) mit Biotin über eine kupferkatalysierte oder kupferfreie Click-Reaktion. Biotin-markierte Biomoleküle können zur weiteren Reinigung und Detektion an Avidin oder Streptavidin gebunden werden.
Die Struktur dieses Biotin-azids zeichnet sich durch einen langen hydrophilen PEG3-Linker aus, der den Abstand des Biotinrestes vom Zielmolekül erhöht, um eine effiziente Bindung an Streptavidin zu erzielen. Der Linker verbessert zudem die Wasserlöslichkeit, um die Konjugation zu erleichtern.
Kunden kauften zusammen mit diesem Produkt
Biotin-X-NHS-Ester
Biotinderivat mit C6-Spacer zur Verringerung des sterischen Effekts bei der Bindung an Aminosäuren, Peptiden oder Proteinen durch Reaktion mit primären Aminen.BDP® 581/591-Alkin
BDP 581/591 ist ein Bordipyrromethen-Fluorophor, der sich u. a. für die Mikroskopie, Fluoreszenzpolarisationsmessungen und Zwei-Photonen-Experimente eignet. Dieses Alkinderivat wird in kupferkatalysierten Click-Chemie-Reaktionen eingesetzt.Cyanin7.5 NHS-Ester
Aminreaktiver NHS-Ester des NIR-Fluoreszenzfarbstoffes Cyanin7.5.Allgemeine Eigenschaften
Erscheinungsform: | farbloser Feststoff |
Molekülmasse: | 400.50 |
CAS-Nummer: | 1910803-72-3 |
Molekülformel: | C16H28N6O4S |
Löslichkeit: | löslich in DMF, DMSO, mäßig löslich in Wasser |
Qualitätskontrolle: | NMR 1H (95 %) und 13C, Dünnschichtchromatografie, Funktionsprüfung |
Lagerungsbedingungen: | Lagerbeständigkeit: 24 Monate ab dem Wareneingang bei −20 °C. Transport: bei Raumtemperatur bis zu drei Wochen. |
Sicherheitsdatenblatt: | herunterladen |
Product specifications |
Zitierungen
- Liang, J.; Han, J.; Gao, X.; Jia, H.; Li, R.; Tse, E. C. M.; Li, Y. Clickable APEX2 Probes for Enhanced RNA Proximity Labeling in Live Cells. Anal. Chem., 2024, 96(2), 685–693. doi: 10.1021/acs.analchem.3c03614
- Edr, A.; Wrobel, D.; Krupková, A.; Šťastná, L. Č.; Cuřínová, P.; Novák, A.; Malý, J.; Kalasová, J.; Malý, J.; Malý, M.; Strašák, T. Adaptive Synthesis of Functional Amphiphilic Dendrons as a Novel Approach to Artificial Supramolecular Objects. International Journal of Molecular Sciences, 2022, 23(4), 2114. doi: 10.3390/ijms23042114
- Shen, J.Z.; Qiu, Z.; Wu, Q.; Finlay, D.; Garcia, G.; Sun, D.; Rantala, J.; Barshop, W.; Hope, J.L.; Gimple, R.C.; Sangfelt, O.; Bradley, L.M.; Wohlschlegel, J.; Rich, J.N.; Spruck, C. FBXO44 promotes DNA replication-coupled repetitive element silencing in cancer cells. Cell, 2021, 184(2), 352–369.e23. doi: 10.1016/j.cell.2020.11.042
- Zeng, Q.; Deng, H.; Li, Y.; Fan, T.; Liu, Y.; Tang, S.; Wei, W.; Liu, X.; Guo, X.; Jiang, J.; Wang, Y.; Song, D. Berberine Directly Targets the NEK7 Protein to Block the NEK7–NLRP3 Interaction and Exert Anti-inflammatory Activity. Journal of Medicinal Chemistry, 2021, 64(1), 768–781. doi: 10.1021/acs.jmedchem.0c01743
