Cyanin-5.5-azid

Artikel-Nr. Packungseinheit Preis Vorlaufzeit
14030 100 uL, 10 mM/DMSO $110.00 Auf Lager
34030 500 uL, 10 mM/DMSO $210.00 Auf Lager
44030 1 mL, 10 mM/DMSO $410.00 Auf Lager
A4030 1 mg $110.00 Auf Lager
B4030 5 mg $210.00 Auf Lager
C4030 10 mg $310.00 Auf Lager
D4030 25 mg $410.00 Auf Lager
E4030 50 mg $695.00 Auf Lager

Dieses Farbstoffazid ist ein Markierungsreagenz für die Click-Chemie und erhältlich als 10-mM-Lösung in DMSO oder als Feststoff. Cyanin 5.5 ist ein im Fernrotbereich emittierender Fluorophor, der als Alternative zu Cy5.5®, Alexa Fluor® 680 und DyLight 680 verwendet werden kann.

Absorptions- und Emissionsspektren von Cyanin 5.5

Absorptions- und Emissionsspektren von Cyanin 5.5

Kunden kauften zusammen mit diesem Produkt

FAM-azid, 6-Isomer

FAM-Azid ist ein häufig verwendetes Fluoreszenzfarbstoff-Azid für die Click-Chemie

Cyanin-5-amin

Amin-funktionalisierter Fluoreszenzfarbstoff Cyanin 5

Sulfo-Cyanin-3-carbonsäure

Wasserlöslicher Fluoreszenzfarbstoff Sulfo-Cyanin 3, nichtaktivierte Carbonsäure

Allgemeine Eigenschaften

Erscheinungsform: dunkelblaue(s) Pulver bzw. Lösung
Molekülmasse: 701.34
Molekülformel: C43H49ClN6O
Löslichkeit: löslich in organischen Lösungsmitteln (DMSO, DMF, Dichlormethan), geringe Löslichkeit in Wasser
Qualitätskontrolle: NMR 1H, HPLC-MS (95 %)
Lagerungsbedingungen: Lagerbeständigkeit: 24 Monate ab dem Wareneingang bei −20 °C an einem lichtgeschützten Ort. Transport: bei Raumtemperatur bis zu drei Wochen. Längere Lichteinwirkung vermeiden. Trocken lagern.
Sicherheitsdatenblatt:: herunterladen

Spektrale Eigenschaften

Anregungsmaximum / nm: 684
ε / L⋅mol−1⋅cm−1: 209000
Emissionsmaximum / nm: 710
Fluoreszenz-Quantenausbeute: 0.2
CF260: 0.07
CF280: 0.03

Zitierungen

  1. Tian, T.; Zhang, H.-X.; He, C.-P.; Fan, S.; Zhu, Y.-L.; Qi, C.; Huang, N.-P.; Xiao, Z.-D.; Lu, Z.-H.; Tannous, B.A.; Gao, J. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials, 2018, 150, 137–149. doi: 10.1016/j.biomaterials.2017.10.012
  2. Cho, C.-F.; Wolfe, J.M.; Fadzen, C.M.; Calligaris, D.; Hornburg, K.; Chiocca, E.A.; Agar, N.Y.R.; Pentelute, B.L.; Lawler, S.E. Blood-brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents. Nature Communications, 2017, 8, 15623. doi: 10.1038/ncomms15623
  3. Li, N.; Cai, H.; Jiang, L.; Hu, J.; Bains, A.; Hu, J.; Gong, Q.; Luo, K.; Gu, Z. Enzyme-Sensitive and Amphiphilic PEGylated Dendrimer-Paclitaxel Prodrug Based Nanoparticles for Enhanced Stability and Anticancer Efficacy. ACS Applied Materials & Interfaces, 2017, 9(8), 6865–6877. doi: 10.1021/acsami.6b15505
  4. Garg, S.M.; Paiva, I.M.; Vakili, M.R.; Soudy, R.; Agopsowicz, K.; Soleimani, A.; Hitt, M.; Kaur, K.; Lavasanifar, A. Traceable PEO-poly(ester) micelles for breast cancer targeting: The effect of core structure and targeting peptide on micellar tumor accumulation. Biomaterials, 2017, 144, 17–29. doi: 10.1016/j.biomaterials.2017.08.001
  5. Sun, Y.; Hong, S.; Ma, X.; Cheng, K.; Wang, J.; Zhang, Z.; Yang, M.; Jiang, Y.; Hong, X.; Cheng, Z. Recyclable Cu(I)/Melanin Dots for Cycloadditions, Bioconjugation and Cell Labeling. Chemical Science, 2016, 7(9), 5888–5892. doi: 10.1039/c6sc01536k
  6. Huang, R.; Conti, P.S.; Chen, K. In Vivo Tumor Angiogenesis Imaging Using Peptide-Based Near-Infrared Fluorescent Probes. Methods in Molecular Biology, 2016, 1444, 73–84. doi: 10.1007/978-1-4939-3721-9_8
  7. Puthenveetil, S.; Musto, S.; Loganzo, F.; Tumey, L.N.; O'Donnell, C.J.; Graziani, E.I. Development of solid-phase site-specific conjugation and its application towards generation of dual labeled antibody and Fab drug conjugates. Bioconjugate Chemistry, 2016, 27(4), 1030–1039. doi: 10.1021/acs.bioconjchem.6b00054
  8. Stone, R.C.; Fellows, B.D.; Qi, B.; Trebatowski, D.; Jenkins, B.; Raval, Y.; Tzeng, T.R.; Bruce, T.F.; Mcnealy, T.; Austin, M.J.; Monson, T.C.; Huber, D.L.; Mefford, O.T. Highly Stable Multi-Anchored Magnetic Nanoparticles for Optical Imaging within Biofilms. Journal of Colloid and Interface Science, 2015, 459, 175–182. doi: 10.1016/j.jcis.2015.08.012
  9. Zhong, J.; Li, L.; Zhu, X.; Guan, S.; Yang, Q.; Zhou, Z.; Zhang, Z.; Huang, Y. A smart polymeric platform for multistage nucleus-targeted anticancer drug delivery. Biomaterials, 2015, 65, 43–55. doi: 10.1016/j.biomaterials.2015.06.042
  10. Li, G.; Xing, Y.; Wang, J.; Conti, P.S.; Chen, K. Near-infrared fluorescence imaging of CD13 receptor expression using a novel Cy5.5-labeled dimeric NGR peptide. Amino Acids, 2014, 46(6), 1547-1556. doi: 10.1007/s00726-014-1727-x
  11. Morton, S.W.; Zhao, X.; Quadir, M.A.; Hammond, P.T. FRET-enabled biological characterization of polymeric micelles. Biomaterials, 2014, 35(11), 3489-3496. doi: 10.1016/j.biomaterials.2014.01.027
  12. Chan, L.J.; Smith, C.M.; Chua, B.E.; Lin, F.; Bathgate, R.A.D.; Separovic, F.; Gundlach, A.L.; Hossain, M.A.; Wade, J.D. Synthesis of fluorescent analogs of relaxin family peptides and their preliminary in vitro and in vivo characterization. Frontiers in Chemistry, 2013, 1, Article 30. doi: 10.3389/fchem.2013.00030
  13. Astakhova, I.K.; Wengel, J. Interfacing Click Chemistry with Automated Oligonucleotide Synthesis for the Preparation of Fluorescent DNA Probes Containing Internal Xanthene and Cyanine Dyes. Chemistry - a European Journal, 2013, 19(3), 1112-1122. doi: 10.1002/chem.201202621
  14. Zolotarskaya, O.Y.; Wagner, A.F.; Beckta, J.M.; Valerie, K.; Wynne, K.J.; Yang, H. Synthesis of Water-Soluble Camptothecin-Polyoxetane Conjugates via Click Chemistry. Molecular Pharmaceutics, 2012, 9(11), 3403-3408. doi: 10.1021/mp3005066
weitere ... (10)
Sie haben den Artikel in den Warenkorb gelegt.. Warenkorb ansehen oder zur Kasse gehen
Die eingegebene Zahl ist falsch..
translate